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Abstract

To be able to construct viscoelastic material models from fractional-order differin-
tegral equations that are applicable for 3D finite-strain analyses requires definitions for
fractional derivatives and integrals of symmetric tensor fields, like stress and strain.
Here we define these fields in the body manifold. We then map them into spatial fields,
expressed in terms of an Eulerian or Lagrangian reference frame where most analysts
prefer to solve boundary value problems.

1 Definitions

Liouville and Riemann® defined fractional-order integration as an analytic continuation of
Cauchy’s n-fold integral by writing [4, €5, Eqn. A]

T
Jey(z) = I‘(la) /0 = i/)l—a y(z')dz', o,z € Ry, (1)
where J¢ is the Riemann-Liouville integral operator of order a.

From this single definition for fractional integration, one can construct several definitions
for fractional differentiation (cf. e.g:, [10, 13]). The special operator D¢ that we choose to
use, which requires the dependent variable y to be continuous and [«a]-times differentiable
in the independent variable z, is defined by

D2y(z) = Jl*1=*Dlely(g), (2)
such that

. lo] g
DyJoy(@) =y(@) and JoDfy(e) =y(2) - ) 5 ¥ed, @cRi,  (3)
k=0
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with y(()’i := D¥y(0") wherein D™, n € N, is the classical differential operator. It is accepted

practice to call D¢ the Caputo? differential operator of order «, since Caputo [1] was the
amoung the first to use this operator in applications and to study some of its properties.

2 Continua

Body-tensor fields, space-tensor fields, Cartesian space-tensor fields, and the mappings be-
tween them have all been carefully documented by Lodge in [5, 6, 7).

A continuum consists of an infinite set of point particles {8}, also referred to as mass
elements, filling a region B in 3-space (i.e., B C R®). We call this set the body B. In any
admissible body-coordinate system B, defined over B, each particle 3 in B is assigned a
unique set of body coordinates, { = (€!,£%,€%), & € R, that are independent of time (i.e.,
B: P — §, cf. Lodge [6]); they convect with the body.

This same continuum B can also be represented by an infinite set of point places {Xo}
occupying a connected region in space S at some arbitrary time ¢y denoting its reference
state. Each place X, relates to a unique particle 3 in B and is given a label of X, which
corresponds to the spatial position of Xy (and therefore of 9B) in this reference configuration.
Given an admissible, rectangular-Cartesian, coordinate system C defined over S, each place
X in S is thereby assigned a unique set of spatial coordinates X = (X1,X3,X3), X; € R,
that are fixed in space (i.e., C: Xy — X).

Later, at current time ¢ (¢ > ), continuum B coincides with another infinite set of
point places {X} that now occupies a different region in space S. Each place X relates to a
unique particle 3 in B and is given a label of & with coordinates x = (x1, X2, x3) in C, which
corresponds to the spatial position of X (and therefore of 3) in this current configuration.
Because C: Xg — X and C: X — x, the location of a particle in space varies over time.

Particle 8 moves through space S with a velocity v(t) of

ox

V= (4)

whose components v; = 0x;/0t, i = 1,2, 3, are quantified in the Cartesian coordinate system
C.

The fundamental hypothesis of Cartesian continuum mechanics is that the motion of
each particle in the body is assumed to be sufficiently smooth in the sense that mappings

bx=F-6X and Sv=DF-6X=DF.-Fl.éx=1L iz (5)

exist, where F'(tg,t) := 0x/dX defines the deformation-gradient tensor and L(t) = dv/0x
the velocity-gradient tensor, neither of which is symmetric. The deformation gradient F' is
positive definite because, from the conservation of mass,

0< 2 =det F < oo, (6)

2 Actually, Liouville introduced the operator in his historic first paper on the topic [4, {6, Eqn. B].
Still, nothing in Liouville’s works suggests that he ever saw any difference between D = Jl®1=eDle1 and
D> = pleljlel== " Do being his accepted definition [4, first formula on pg. 10]—the Riemann-Liouville
differential operator of order a. Liouville freely interchanged the order of integration and differentiation,
because the class of problems that he was interested in happened to be a class where such an interchange
is legal, and he made only a few terse remarks about the general requirements on the class of functions for
which his fractional calculus works [8]. Rabotnov [11, pg. 129] also introduced this differential operator into
the Russian viscoelastic literature a year before Caputo’s paper was published.



and consequently F~1(tg,t) = 0X /Ox exists. In contrast, L is not positive definite, in
general, and as such L~! need not exist. Here o = p(t) denotes mass density with gp = ¢(to)-

3 Field Transfer: Body To Cartesian Space

The operation of field transfer makes it very plain as to whether a particular spatial field
is Eulerian or Lagrangian; it is a consequence of the time when field transfer takes place.
Eulerian fields result from a transfer of field at current time ¢ given by the mapping: body

field I=t> space field; whereas, Lagrangian fields result from a transfer of field at reference
time to (which is often taken to be zero) given by: body field :t=°> space field. Details of the

mathematics underlying the mappings é} and é can be found in the texts of Lodge [5, 7]
An important property of the field transfer operator is that the resulting spatial fields are
objective (i.e., frame invariant).

Let us consider (i) an arbitrary, symmetric, covariant, body tensor u(;t), and (ii) an
arbitrary, symmetric, contravariant, body tensor n(%3;t), whose mappings into Cartesian
space are known; specifically, let the covariant field map as

t
= M(X;t),
p(B;t) t (%¢) such that N=FT. M. F, (7a)
: = N(x(); to, t)a
and the contravariant field map as
= G(X;t)
n(P;t) < 4, > such that H=F 1. G -FT, (7b)
= H(xoa t07 t))

where M and G are some arbitrary (but known), symmetric, Eulerian, tensor fields, with IV
and H designating their respective, symmetric, Lagrangian counterparts. In these transfor-
mations of field, the deformation gradient F' serves as a Jacobian of transformation between
the two Cartesian frames that pulls the known Fulerian field backwards, out of the Eulerian
frame and into the Lagrangian frame.

3.1 Rates of Tensor Fields

Lodge [5, pp. 321-327] has shown that the time rate-of-change D (= 9/0t) of covariant
tensor g maps into Cartesian space as

t v

= M v
Dp < > suchthat DN=FT.M.F, (8a)
=> DN,

while the time rate-of-change of contravariant tensor  maps as

t A
= G
. suhthat DH=F'G.FT, (8b)
DH,

Dn

wherein

v
M=DM+v-VM+L" M+M-L and G=DG+v-VG-L-G-G-LT (9)



denote the lower- and upper-convected derivatives, respectively, of Oldroyd [9], which reduce
to Lie derivatives taken with respect to velocity v whenever DM = 0 or DG = 0. The
vector operator V represents the spatial gradient 8/0z.

Even though Cartesian tensor fields cannot distinguish between covariance and con-
travariance, rates-of-change of Cartesian fields in the Eulerian frame do have an intrinsic
dependence upon this property.

3.2 Fractional Rates of Tensor Fields

The Caputo derivative D¢ (defined in Eq. 2) of covariant tensor g maps into Cartesian
space as

( t
= DM

Dp < 4 * 777 such that DN =FT.D*M . F, (10a)
= DZN,

while the Caputo derivative of contravariant tensor 7 maps as

i
= DG
D¢n {4 * 77 such that D¢H = F~!. D@ . FT, (10b)
D2H,
wherein
DAA = — 1 /t L pT ). M) PN, d, O<a<1, (lla)
* I‘(l—a) 0 (t“—tl)a ) I ’ ]
and
DG = — /t L _ri ). G@)-FI(#,0)d, 0<a<1,  (11b)
* . 1-\(1 _ a) tO (t . t,)a ) ) 3 )

are objective rates of order o, with operator D2V being affiliated with covariant-like fields
and D% with contravariant-like fields. Unlike DN and D2H, which are actual Caputo
derivatives, derivatives D2V M and D%2@G are not true Caputo derivatives, in a strict sense
of the definition, which is why they are given different notations.

A rigorous derivation of these results is given in Ref. [3].

3.3 [Fractional Integrals of Tensor Fields

The Riemann-Liouville integral J* (defined in Eq. 1) of covariant tensor g maps into Carte-
sian space as

t
= JM

Ju ’ suchthat J N=FT.J°"M . F, (12a)
Y JON

while the Riemann-Liouville integral of contravariant tensor n maps as

t
= J°Qq,
to

= JH,

Jon such that J*H = F~ 1. j**@.F-T. (12b)



The Eulerian tensors J*Y M and J*2@G are objective integrals of order o defined by

avar._ L ' L S N 1 ogp—1lry ! a
TM = s /t s B ME) P e (13a)
and . . )
Qah Y ._ Iy Ty /
e /to gy P G) - FT( bt (13b)

Unlike J*N and J*H, which are actual Riemann-Liouville integrals, integrals J*¥ M and
J22 @G are not true Riemann-Liouville integrals, in a strict sense of the definition, which is
why they are given different notations.

Again, a rigorous derivation of these results is given in Ref. [3].

4 Some Viscoelastic Models

To illustrate the process of analytically continuing a known constitutive equation to one of
fractional order, we consider three examples: the rubberlike liquid, the convected Maxwell
fluid, and the convected Kelvin-Zener solid (cf. Lodge [5]). Expressed in terms of body
tensor fields, the rubberlike liquid is

t
w(t) + oy = [ M=)y (¢, (14a)
0
the convected Maxwell fluid is
T Dm(t) + m(t) + py ' (t) = —n Dy (t), (14b)
and the convected Kelvin-Zener solid is

T Dr(t) + w(t) + py~ (t) = py  (to) —n DY H(8), (14c)

where 7(%3;t) is the symmetric, contravariant, stress tensor, y(;t) is the symmetric,
postive-definite, covariant, metric tensor, M is the memory function (usually taken to be a
decaying exponential), and 7,  and p are material constants. All three of these models are
assumed to be incompressible, with p being a Lagrange multiplier introduced to force this
constraint: det~y(t) = det~y(to).

In much the same way that Caputo and Mainardi [2] analytically continued models in 1D,
we analytically continue the 3D models in Eq. (14) by writing the fractional-order rubberlike
liquid as

m(t) + ey (t) = n Iy (1), (15a)

the fractional-order convected Maxwell fluid as
T DIw(t) + 7 (t) +py T (t) = —* Dy (t), (15b)
and the fractional-order convected Kelvin-Zener solid as
T Dgm(t) + m(t) + v (t) = py (o) — 1 DIV TH(Y). (15¢)

The memory function in Eq. (15a) is now considered to be an Abel (power law) kernel
instead of a Boltzmann (exponential) kernel. The fact that the fractional derivatives on



both sides of the equation in Eqgs. (15b & 15c¢) are of the same order (viz., a, 0 < a < 1)
ensures that stress waves propagate with finite velocities in these models, which is important
both physically and numerically.
¢ t
In an Eulerian transfer of field, Lodge [5, 7] has shown that w(t) = T(t), v~ 1(t) = I,
A

~~(to) N B(tg,t), and Dy~1(¢t) =T = —2D(t), where T is the Cauchy stress tensor, I
is the identity tensor, B (:= F'-F'T) is the Finger deformation tensor, and D (:= 3(L+L™T))
is the rate-of-deformation tensor. Using these results, along with Egs. (10 & 12), one can

apply the field transfer operator = to Eq. (15) and get the following fractional-order
viscoelastic models in the FEulerian frame. The fractional-order rubberlike liquid becomes

t
1
T+ol=pJoor=* / B(t,t)dt, 16
tol=pr L= gt | e B (162)
the fractional-order upper-convected Maxwell fluid becomes
DT + T + pI = 27*D2* D, (16b)

and the fractional-order upper-convected Kelvin-Zener solid becomes
DT + T+ pl =pB+20*DXD, (16¢)

where now the constraint for incompressiblity is det F' = 1 in accordance with Eq. (6). Their
Lagrangian counterparts can be written straightaway, if needed.
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